A Reinvestigation of the Reductive Ring-opening of a 3-Substituted exo-4,5-Epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-3 α-ol to the Corresponding 3,5-Diol

Zhi-Yu Liu* and Xin-Jie Chu
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

Regio- and stereo-specific reduction of the exo-epoxy alcohol 5 with LiAlD_{4} produced the $4 \alpha-\mathrm{D}$-trans3,5 -diol 7 and the 4β-D-trans- 3,5 -diol 8 in varying ratios, an indication that in spite of epoxide rearrangement between 5 and 6 direct epoxide ring-opening of 5 to afford the 3,5 -diol 4 is the primary pathway.

During the course of our studies on the syntheses of natural products involving a retro Diels-Alder reaction, it was found that both 3 -substituted exo-4,5-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en$3 \alpha-\mathrm{ol} 5^{1}$ and 3-substituted endo-3,4-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]-dec-8-en- 5β-ol 6^{2} upon reduction by LiAlH_{4} yielded the same trans-diol 4 (Scheme 1); this was then converted into natural products clavulone 1 and chromomoric acid DI methyl ester 2. It was also observed that while the endo-epoxy alcohol 6 was quite easily reduced to the trans-3,5-diol 4, the exo-epoxy alcohol 5 underwent only very slow reduction. Since the epoxy alcohols 5 and 6 equilibrate under basic conditions ${ }^{3}$ and there is steric blocking by the olefinic bridge, ${ }^{1,3}$ it was generally assumed that the exo-epoxy alcohol 5 does not itself undergo reductive epoxide ring-opening with LiAlH_{4} to give the diol 4. Rather, the reaction path involves formation and subsequent reduction of the inverted epoxy alcohol $6 .{ }^{1,3}$ However, since we had found that the exo-epoxide 9 is reduced exclusively to the diol 10 with LiAlH_{4} in refluxing THF 4 (Scheme 2), we thought that the exo-epoxy alcohol 5 should behave similarly. Here, we report our results using an isotopic technique which sheds light on this process.

Our work was based on the following considerations. While both 5 and 6 were reduced by LiAlH_{4} to give the diol 4, the stereochemistry of the hydride attack would be different if the epoxy alcohol 5 underwent direct reduction. With the endoepoxy alcohol 6 , hydride would approach from the exo side, while in the exo-epoxy alcohol 5 , the hydride attack would be from the endo side. Therefore, if lithium aluminium deuteride $\left(\mathrm{LiAlD}_{4}\right)$ was used in place of LiAlH_{4} and the epoxide ring in 5 could be directly opened, the 4α-D-trans- 3,5 -diol 7 should be formed; otherwise, only the 4β-d-trans-3,5-diol 8 would be given by way of epoxide migration of 5 to 6 followed by epoxide ringopening (Scheme 1). The structures of the diols 7 and 8 were then expected to be distinguished by analysis of their ${ }^{1} \mathrm{H}$ NMR data.

The epoxy alcohols $5 \mathbf{5}, \mathbf{b}$ and $\mathbf{6 a}$, b were prepared by treatment of the epoxy ketone 3 with MeLi or BuLi at $0^{\circ} \mathrm{C}$ for $0.5-1 \mathrm{~h} ; \mathbf{5 c}$, \mathbf{d} were prepared by rapid addition of 3 to the corresponding lithium reagent and then quenching; $\mathbf{6 c}, \mathbf{d}$ were obtained after reaction overnight at room temp.; 5 e was given as the only adduct when 3 was treated with oct-2-ynylzinc bromide, no inverted epoxy alcohol 6 e being isolated.
LiAlH_{4} reduction of $\mathbf{5 a - e}$ and $\mathbf{6 a - d}$ gave the diols $\mathbf{4 a - e}$, the ${ }^{1} \mathrm{H}$ NMR data for which were analysed; the $4-\mathrm{H}_{2}$ assignments were made by use of the double resonance technique. Taking 4a for example: on irradiation of the signal at $\delta 2.69(6-H)$ the signal at $\delta 3.76$ remained a doublet of doublets ($J 6.3$ and 2.1), showing very little coupling of $5-\mathrm{H}$ with $6-\mathrm{H}$, with the signals of $4-\mathrm{H}_{2}$ and $5-\mathrm{H}$ forming an ABX system. On irradiation of the signal at $\delta 3.76(5-\mathrm{H})$ the doublet of doublets at $\delta 1.91(J 13.8$ and 6.3) and 1.63 (J 13.8 and 2.1) was simplified to doublets at

Scheme 1
$\delta 1.91(J 13.8)$ and $1.63(J 13.8)$, a result of $4-\mathrm{H}_{2}$, appearing as an $A B$ system.

Scheme 2

Table $1 \mathrm{LiAlD}_{4}$ Reductive ring-opening of the exo-epoxy alcohols 5a-e

		Products		
Entry	Epoxy alcohol	$\mathbf{7 : 8}$	Ratio	Yield (\%)
1	$\mathbf{5 a}, \mathrm{R}=\mathbf{M e}$	$\mathbf{7 a}: \mathbf{8 a}$	$63: 37$	92
2	$\mathbf{5 b}, \mathrm{R}=\mathbf{B u}$	$\mathbf{7 b}: \mathbf{8 b}$	$51: 49$	90
3	$\mathbf{5 c}, \mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$	$\mathbf{7 c}: \mathbf{8 c}$	$53: 47$	87
4	$\mathbf{5 d}, \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{8} \mathrm{OSiMe}_{2} \mathrm{Bu}^{t}$	$\mathbf{7 d}: \mathbf{8 d}$	$45: 55$	77
5	$\mathbf{5 e}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}=\mathrm{CC}_{5} \mathrm{H}_{11}$	$\mathbf{7 e}: \mathbf{8 e}$	$\mathbf{6 5 : 3 5}$	81

LiAlD_{4} reduction of 6 a -d exclusively afforded the 4β-D-trans3,5 -diol 8 having a $4 \alpha-\mathrm{H}$. Comparison of the spectra of 4 and 8 permits unequivocal assignment of the $4 \alpha-\mathrm{H}$ and $4 \beta-\mathrm{H}$ in 4 . If $\mathrm{R}=\mathrm{Me}$, for example, the doublet of doublets at $\delta 1.91$ ($J 13.8$ and 6.3) in 4a was simplified to a doublet at $\delta 1.89$ ($J 6.2$) in 8a, whereas the doublet of doublets at $\delta 1.63(J 13.8$ and 2.1$)$ in $\mathbf{4 a}$ disappeared in 8a, suggesting that the signal at $\delta 1.89$ in 8a must arise from the resonance of $4 \mathrm{a}-\mathrm{H}$. Therefore, the signals at $\delta 1.91$ and 1.63 in 4 a must be due to the protons $4 \alpha-\mathrm{H}$ and $4 \beta-\mathrm{H}$ respectively.

With complete assignment of $4 \alpha-\mathrm{H}$ and $4 \beta-\mathrm{H}$ in 4 , we next investigated the LiAlD_{4} reduction of $\mathbf{5 a - e}$. An analysis of the spectra of the deuteriated diols so formed showed that they were a mixture of $\mathbf{7}$ and 8 . With $\mathrm{R}=\mathrm{Me}$ for example, the doublets of doublets at $\delta 1.91(4 \alpha-\mathrm{H})$ and $1.63(4 \beta-\mathrm{H})$ in 4 a collapsed to a doublet at $\delta 1.88(J 6.3)$ and a singlet at $\delta 1.61$, respectively, in the mixture of 8 a and 7a. The ratio of the two signals, that is, the ratio of 8a to 7 a , was 37 to 63%. Likewise, an analysis of the ${ }^{1} \mathrm{H}$ NMR results of the mixtures formed by LiAlD_{4} reduction of $\mathbf{5 b - e}$ are summarized in Table 1.

It is clear from the Table that LiAlD_{4} reduction of 5 does afford 7 through direct epoxide ring-opening as the primary pathway, although it is accompanied by 8 as a result of epoxide migration to the inverted epoxide 6 . Furthermore, although an increase of the bulkiness of the R group enhances the tendency of epoxide migration, ${ }^{3}$ the yield of the diol $\mathbf{8}$ does not increase significantly. This LiAlH_{4} reduction of the exo-epoxy alcohol 5 may be attributed to the initial complexation of the reducing agent with the endo-alcoholic group, followed by intramolecular hydride attack at the exo-epoxide from its rear side.

In conclusion, in spite of the epoxide rearrangement of 5 to 6 and the steric blocking of hydride attack from the endo side, the epoxy alcohol 5 can still undergo direct reductive ringopening to yield the diol 4. This stereochemical feature is of considerable help in our synthetic studies of other chromomoric acids.

Experimental

General Details.-M.p.s were determined in open capillaries using a Mel-Temp apparatus and are uncorrected. IR spectra were recorded as neat films for oils or as KBr discs for solids on a Schimadzu IR-440 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were determined with TMS as an internal standard in CDCl_{3} at 200 MHz on a Varian XL-200 spectrometer or at 300 MHz on a Bruker AM-300 spectrometer; J values are given in Hz . Mass
spectra were obtained on a Finnigan 4021 spectrometer using the electron impact technique. High resolution mass spectra (HRMS) were recorded with Finnigan MAT 8430 spectrometer. Microanalyses were performed using an Italian Carlo-Erba 1106 elemental analyser. All the reactions were carried out under dry N_{2} atmosphere. Dry diethyl ether and THF were distilled over sodium-benzophenone ketyl under N_{2} atmosphere. Flash column chromatography was conducted on silica gel H ($10-40$ mesh) from Qingdao Haiyang Chemical Works, with light petroleum (b.p. $60-90^{\circ} \mathrm{C}, \mathrm{LP}$) and ethyl acetate (EA) as eluent in appropriate ratios.

3-Methyl-exo-4,5-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-3-ol 5a and 3-Methyl-endo-3,4-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-5-ol 6a.-To a solution of the epoxy ketone $3(1.046 \mathrm{~g}, 6.46 \mathrm{mmol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of $\operatorname{MeLi}(1.00$ mol dm ${ }^{-3}$ in ether; $9.1 \mathrm{~cm}^{3}, 9.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temp. for 35 min and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(15 \mathrm{~cm}^{3}\right)$. The mixture was extracted with EtOAc ($3 \times 30 \mathrm{~cm}^{3}$) and the combined extracts were washed with brine ($3 \times 10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford crude 5a and 6a. Flash chromatography purification (LP-EA, 80:20) afforded the pure epoxy alcohols: $5 \mathrm{a}(883 \mathrm{mg}, 77 \%)$ and $\mathbf{6 a}(177 \mathrm{mg}, 15 \%)$ as a white solid and an oil respectively. Epoxy alcohol 5a: m.p. $103.5-104.5^{\circ} \mathrm{C}$ (hexane) (Found: C, 74.25 ; H, 8.0. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.13 ; \mathrm{H}, 7.92 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400,3050,1460,1130$, $1020,860,760$ and $740 ; \delta_{\mathrm{H}} 6.32(1 \mathrm{H}$, dd, $J 5.6$ and $2.8,8-\mathrm{H}$ or $9-\mathrm{H}$), 6.16 (1 H , dd, $J 5.6$ and $2.8,9-\mathrm{H}$ or $8-\mathrm{H}$), 3.18 ($1 \mathrm{H}, \mathrm{d}, J 2.2$, $4-\mathrm{H}$ or $5-\mathrm{H}), 3.10(1 \mathrm{H}, \mathrm{d}, J 2.2,5-\mathrm{H}$ or $4-\mathrm{H}), 3.02-2.86(3 \mathrm{H}, \mathrm{m})$, $2.54(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 4.0$), 1.62(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.42(2 \mathrm{H}, \mathrm{m}$, $10-\mathrm{H})$ and $1.40\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right) ; m / z 178\left(\mathrm{M}^{+}, 16 \%\right)$, 161 (28), 160 (15), 112 (100) and 66 (4). Epoxy alcohol 6a: (Found: C, $74.0 ; \mathrm{H}, 8.05 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.13 ; \mathrm{H}, 7.92 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3200,3050,1470,1380,1060,1050,790,740$ and $720 ; \delta_{\mathrm{H}} 6.21$ (1 H , dd, $J 5.8$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}$), $5.90(1 \mathrm{H}, \mathrm{dd}, J 5.8$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{d}, J 3.0,5-\mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.02-2.88$ (3 $\mathrm{H}, \mathrm{m}), 2.81(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 3.5$), 1.41(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 1.43(2 \mathrm{H}$, $\mathrm{m}, 10-\mathrm{H}$) and $1.44\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right)$; $m / z 165(48 \%)$, 145 (15), 90 (15) and 66 (100).

3-Butyl-exo-4,5-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-3-ol $\mathbf{5 b}$ and 3-Butyl-endo-3,4-epoxytricyclo[5.2.1.0,6]dec-8-en-5-ol 6b.The same procedure as described for preparation of 5 a and $\mathbf{6 a}$ was used. Epoxy alcohol 5b: m.p. $64.5-66.0^{\circ} \mathrm{C}$ (hexane) (Found: $\mathrm{C}, 76.4 ; \mathrm{H}, 9.4 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.32 ; \mathrm{H}, 9.15 \%$); $v_{\max } / \mathrm{cm}^{-1} 3400,2980,2850,1470,1380,1005,860$ and $840 ; \delta_{\mathrm{H}}$ $6.34(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $2.8,9-\mathrm{H}$ or $8-\mathrm{H}$), $3.22(1 \mathrm{H}, \mathrm{d}, J 2.2,4-\mathrm{H}$ or $5-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{d}, J$ $2.2,5-\mathrm{H}$ or $4-\mathrm{H}), 3.04-2.84(3 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 4.0$)$, $1.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.76-1.30(8 \mathrm{H}, \mathrm{m})$ and $0.94\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right)$; $m / z 220\left(\mathrm{M}^{+}, 3 \%\right), 203(7), 154$ (7), 137 (34), 97 (71) and 66 (100). Epoxy alcohol 6b: (Found: C, 76.5; H, 9.3. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires C, $76.32, \mathrm{H}, 9.15 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400,3050,1470,1330,1050$, $1030,800,740$ and $720 ; \delta_{\mathrm{H}} 6.23(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $3.0,8-\mathrm{H}$ or $9-$ H), 5.91 ($1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $2.9,9-\mathrm{H}$ or $8-\mathrm{H}$), $3.80(1 \mathrm{H}, \mathrm{d}, J 3.1,5-$ H), $3.04(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.02-2.80(4 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 1.86$ $(1 \mathrm{H}, \mathrm{m}), 1.64-1.26(7 \mathrm{H}, \mathrm{m})$ and $0.94\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right) ; m / z 220$ $\left(\mathrm{M}^{+}, 9 \%\right), 203(22), 155(20), 137(28), 97(28)$ and 66 (100).

3-(8-tert-Butyldimethylsiloxyoctyl)-exo-4,5-epoxytricyclo[5.2.1.0 2,6]dec-8-en-3-ol 5d.-A solution of 8 -tert-butyldimethylsiloxyoctyllithium was prepared from 8 -tert-butyldimethylsiloxyoctyl bromide ($2.10 \mathrm{~g}, 6.4 \mathrm{mmol}$) and lithium (176 $\mathrm{mg}, 25.6 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ at $-5-0^{\circ} \mathrm{C}$ for 2 h . To this lithium reagent was rapidly added the epoxy ketone 3 (930 mg , $5.74 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$ with vigorous stirring. After the mixture had been stirred at this temp. for 20
\min it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$. The resulting mixture was extracted with EtOAc ($4 \times 30 \mathrm{~cm}^{3}$) and the combined extracts were washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and brine ($3 \times 10 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent followed by flash chromatography (LPEA, $90: 10$ to $80: 20$) afforded $4 \mathrm{~d}(2.22 \mathrm{~g}, 95 \%)$ as a colourless oil (Found: C, 70.9; H, 10.3. $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 70.88 ; \mathrm{H}$, 10.41%); $v_{\text {max }} / \mathrm{cm}^{-1} 3450,1245,1100,830$ and $770 ; \delta_{\mathrm{H}} 6.27(1 \mathrm{H}$, dd, $J 6.0$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}$), $6.12(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.57\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{OR}\right), 3.15(1 \mathrm{H}, \mathrm{d}, J 2.0,4-\mathrm{H}$ or $5-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{d}, J 2.0,5-\mathrm{H}$ or $4-\mathrm{H}), 2.94-2.86(2 \mathrm{H}, \mathrm{m}), 2.82$ (1 $\mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{m}), 1.70-1.22(16 \mathrm{H}, \mathrm{m}), 1.53(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, 0.85 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}} \mathrm{Si}$) and 0.04 ($\left.6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right)$; $m / z 389$ (17%), 349 (17), 331 (23), 283 (62), 265 (26), 209 (10), 75 (100) and 66 (78).

3-(8-tert-Butyldimethylsiloxyoctyl)-endo-3,4-epoxytricyclo[5.2.1.0 ${ }^{2,6}$] dec-8-en-5-ol $\mathbf{6 d}$.-To a solution of epoxy ketone 3 $(5.85 \mathrm{~g}, 36.1 \mathrm{mmol})$ in dry ether $\left(45 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of 8 -tert-butyldimethylsiloxyoctyllithium (40 mmol) over 50 min at $-10^{\circ} \mathrm{C}$. The reaction mixture was then stirred at $-10-0^{\circ} \mathrm{C}$ for 2.5 h and then at room temp. overnight. The resulting yellow solution was then quenched by aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ($50 \mathrm{~cm}^{3}$) and extracted with EtOAc ($4 \times 40 \mathrm{~cm}^{3}$). The combined extracts were washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 20$ cm^{3}) and brine ($3 \times 20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was subjected to flash chromatography (LP-EA, $90: 10$ to $70: 30$) to afford the epoxy alcohol $6 \mathrm{~d}(13.0 \mathrm{~g}, 89 \%$) as a colourless oil (Found: C, $71.0 ; \mathrm{H}$, 10.5. $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{3}$ Si requires $\mathrm{C}, 70.88 ; \mathrm{H}, 10.41 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$, 1460,1095 and $840 ; \delta_{\mathrm{H}} 6.18$ (1 H , dd, $J 5.4$ and $2.8,8-\mathrm{H}$ or $9-\mathrm{H}$), $5.87(1 \mathrm{H}$, dd, $J 5.4$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{d}, J 2.5,5-\mathrm{H})$, $3.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8, \mathrm{CH}_{2} \mathrm{OR}\right), 3.01(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.00-2.73(4 \mathrm{H}, \mathrm{m})$, $1.68-1.20(16 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and 0.05 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$); m/z $406\left(\mathrm{M}^{+}, 1 \%\right.$), 349 (34), 325 (6), 283 (100), 265 (20) and 257 (10).

3-Octyl-exo-4,5-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-3-ol 5c.The reaction was carried out as described for the preparation of 5 d to afford 5 c as colourless oil $(83 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3450$, $1470,1340,1240,1020,860$ and $760 ; \delta_{\mathrm{H}} 6.23(1 \mathrm{H}, \mathrm{dd}, J 5.4$ and $2.8,8-\mathrm{H}$ or $9-\mathrm{H}), 6.07(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $3.0,9-\mathrm{H}$ or $8-$ H), 3.11 ($1 \mathrm{H}, \mathrm{d}, J 2.2,4-\mathrm{H}$ or $5-\mathrm{H}$), $3.03(1 \mathrm{H}, \mathrm{d}, J 2.2,5-\mathrm{H}$ or $4-\mathrm{H}), 2.86(2 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{m}), 1.44(1$ $\mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.62-1.40(4 \mathrm{H}, \mathrm{m}), 1.27-1.12(12 \mathrm{H}, \mathrm{m})$ and 0.81 ($3 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{3}$); m/z 276 (M ${ }^{+}, 3 \%$), 258 (2), 210 (3), 193 (13), 163 (2), 97 (45) and 67 (100) (Found: $\mathrm{M}^{+}, 276.2078$. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $M^{+}, 276.2089$).

3-Octyl-endo-3,4-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-5-ol6c.The same procedure as described for the preparation of $\mathbf{6 d}$ was used to yield 6 c as a colourless oil $(91 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3400,1470$, $1330,1240,1050$ and $720 ; \delta_{\mathrm{H}} 6.11(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $2.5,8-\mathrm{H}$ or $9-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.69(1 \mathrm{H}, \mathrm{d}, J 2.5$, $5-\mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 2.91-2.81(3 \mathrm{H}, \mathrm{m}), 2.74(1 \mathrm{H}, \mathrm{m}), 1.90(1$ $\mathrm{H}, \mathrm{brs}, \mathrm{OH}), 1.73(1 \mathrm{H}, \mathrm{m}), 1.49-1.16(15 \mathrm{H}, \mathrm{m})$ and $0.81(3 \mathrm{H}, \mathrm{t}, J$ $\left.6.5, \mathrm{CH}_{3}\right) ; m / z 276\left(\mathrm{M}^{+}, 9 \%\right), 258(2), 247(4), 210(13), 193(15)$, 178 (13), 163 (6), 97 (61) and 66 (100) (Found: $\mathbf{M}^{+}, 276.2084$. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $M^{+}, 276.2089$).

3-(Oct-2-ynyl)-exo-4,5-epoxytricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-3ol 5e.-A solution of oct-2-ynylzinc bromide in THF was prepared ${ }^{5}$ from 1-bromooct-2-yne ($4.0 \mathrm{~g}, 21.2 \mathrm{mmol}$) and $\mathrm{Zn}-\mathrm{Cu}$ couple ($138 \mathrm{mmol}, 6.5$ equiv.) at $40^{\circ} \mathrm{C}$ for 2 h . To this oct-2ynylzinc bromide was added dropwise a solution of the epoxy ketone $3(1.52 \mathrm{~g}, 9.4 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$. After the addition the reaction mixture was stirred at room temp. for 3 h , quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$ and filtered. The aqueous layer was separated out and extracted with EtOAc
($3 \times 30 \mathrm{~cm}^{3}$). The combined extracts were washed with brine $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a brown oil which was subjected to flash chromatography (LP-EA, 97:3) to afford pure 5 e as an oil (2.10 $\mathrm{g}, 82 \%) ; v_{\max } / \mathrm{cm}^{-1} 3530,1190,1070$ and $860 ; \delta_{\mathrm{H}} 6.30(1 \mathrm{H}, \mathrm{m}$, 8 -H or $9-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ or $8-\mathrm{H}), 3.18(1 \mathrm{H}, \mathrm{d}, J 2.3,4-\mathrm{H}$ or $5-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{d}, J 2.3,5-\mathrm{H}$ or $4-\mathrm{H}), 2.92(2 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{m})$, $2.58\left(1 \mathrm{H}, \mathrm{dt}, J 14\right.$ and $\left.2, \mathrm{CH} \mathrm{HC} \equiv \mathrm{CC}_{5} \mathrm{H}_{11}\right), 2.53(1 \mathrm{H}, \mathrm{m}), 2.46(1$ $\mathrm{H}, \mathrm{dt}, J 14$ and $\left.2, \mathrm{CHHC} \equiv \mathrm{CC}_{5} \mathrm{H}_{11}\right), 2.18(2 \mathrm{H}, \mathrm{tt}, J 7$ and 2 , $\left.\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}\right), 1.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.54-1.29(8 \mathrm{H}, \mathrm{m})$ and $0.90\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right) ; m / z 273\left(\mathrm{M}^{+}+1,18 \%\right), 255(20), 206$ (20), $189(30), 163$ (34) and $67(100)$.

General Procedure for LiAlH_{4} Reduction of the exo-4,5-Epoxy Alcohols 5a-e and the endo-3,4-Epoxy Alcohols 6a-d.-To a solution of the epoxy alcohol (1 mmol) in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ under a N_{2} atmosphere was rapidly added LiAlH_{4} (8.2 $\mathrm{mmol})$ and the suspension was stirred at room temp. $\left(10^{\circ} \mathrm{C}\right)$ for 4-6 d (for 5a-e) or 20-30 h (for 6a-d). To the mixture was then added, dropwise and successively at $0^{\circ} \mathrm{C}$, water $\left(0.4 \mathrm{~cm}^{3}\right)$, aqueous $15 \% \mathrm{NaOH}\left(0.4 \mathrm{~cm}^{3}\right)$ and water ($1.2 \mathrm{~cm}^{3}$). The resulting mixture was filtered and the granular precipitate was thoroughly washed with EtOAc. The filtrate was concentrated under reduced pressure and the crude diol was purified by flash chromatography to afford the pure diol 4.

3-Methyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 4a. White solid, 90% yield, m.p. $108-109{ }^{\circ} \mathrm{C}$ (ether) (Found: C, $73.4 ; \mathrm{H}, 9.0$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, $73.30 ; \mathrm{H}, 8.95 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300,3050$, $1360,1320,1140,1125,750$ and $725 ; \delta_{\mathrm{H}} 6.30(1 \mathrm{H}$, dd, $J 5.5$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}$), 6.08 (1 H , dd, $J 5.5$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}$), 3.76 ($1 \mathrm{H}, \mathrm{dd}, J 6.3$ and $2.1,5-\mathrm{H}), 2.97(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.92(1$ $\mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.69(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $6-\mathrm{H}), 1.91(1 \mathrm{H}, \mathrm{dd}, J$ 13.8 and $6.3,4 \alpha-\mathrm{H}), 1.63(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $2.1,4 \beta-\mathrm{H}), 1.61(2$ H , s, two OH), $1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.34(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ $165(48 \%), 145$ (15), 97 (33), 96 (15) and 66 (100).

3-Butyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 4b. White solid, 90% yield, m.p. $114.0-115.5^{\circ} \mathrm{C}$ (ether) (Found: C, 75.6 ; H, 10.2. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.63 ; \mathrm{H}, 9.97 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300$, $1340,1140,1100$ and $730 ; \delta_{\mathrm{H}} 6.34(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11(1 \mathrm{H}$, dd, $J 5.6$ and $3.1,9-\mathrm{H}$ or $8-\mathrm{H}$), $3.73(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 2.96(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H})$, $2.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 1.85(1 \mathrm{H}$, dd, $J 13.7$ and $6.2,4 \alpha-\mathrm{H}), 1.73(1 \mathrm{H}$, dd, $J 13.7$ and $4.7,4 \beta-\mathrm{H})$, $1.67-1.62(2 \mathrm{H}, \mathrm{m}), 1.52-1.30(6 \mathrm{H}, \mathrm{m}), 1.40(2 \mathrm{H}, \mathrm{s}$, two OH$)$ and $0.92\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right) ; m / z 204(2 \%), 187(3), 165(30), 147$ (3), 139 (20) and 66 (100).

3-Octyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 4c. White solid, 80% yield, m.p. $105.0-106.0^{\circ} \mathrm{C}$ (ether) (Found: C, 77.7 ; H, 11.0. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.65 ; \mathrm{H}, 10.86 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3300,1340,1320,1260,1100,1020,810$ and $740 ; \delta_{\mathrm{H}} 6.34$ (1 H , dd, $J 5.6$ and $2.8,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11(1 \mathrm{H}$, dd, $J 5.6$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.95(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-$ H), $2.86(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H})$, $2.65(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $6.2,4 \alpha-$ H), 1.72 ($1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $4.7,4 \beta-\mathrm{H}), 1.66-1.61(\mathrm{~s} \mathrm{H}, \mathrm{m})$, $1.52-1.23(16 \mathrm{H}, \mathrm{m}$, including two OH at 1.36$)$ and $0.88(3 \mathrm{H}, \mathrm{t}$, $J 7.0, \mathrm{CH}_{3}$); $m / z 260$ (2\%), 242 (2), 211 (13), 195 (21), 165 (75) and 67 (100).
3-(8-tert-Butyldimethylsiloxyoctyl)tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 4 d . White solid, 80% yield, m.p. $80.0-81.0^{\circ} \mathrm{C}$ (hexane) (Found: C, 70.4; H, 10.75. $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}$ requires C, 70.53; $\mathrm{H}, 10.85 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3270,1240,1120,1090,835$ and $745 ; \delta_{\mathrm{H}}$ $6.34(1 \mathrm{H}$, dd, $J 5.6$ and $2.5,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{OR}\right)$, $2.96(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}$ or $6-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $6.2,4 \alpha-H), 1.72(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $4.7,4 \beta-\mathrm{H}), 1.67-1.61(2 \mathrm{H}$, $\mathrm{m}), 1.56-1.30(16 \mathrm{H}, \mathrm{m}$, including two OH at 1.54$), 0.90(9 \mathrm{H}, \mathrm{s}$,
Bu^{t}) and 0.05 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$); $m / z 391$ (38%), 373 (42), 351 (20), 333 (100), 325 (22), 307 (7) and 165 (62).

3-(Oct-2-ynyl)tricyclo[5.2.1.0 ${ }^{2,6}$] dec-8-ene-3,5-diol 4e. White solid, 94% yield, m.p. $70.0-71.0^{\circ} \mathrm{C}$ (hexane) (Found: C, $78.7 ; \mathrm{H}$, 9.6. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, $78.79 ; \mathrm{H}, 9.55 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300$, $3050,1320,1130,1110$ and $740 ; \delta_{\mathrm{H}} 6.30(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 2.6 , $8-\mathrm{H}$ or $9-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.78(1 \mathrm{H}$, $\mathrm{d}, J 6.3,5-\mathrm{H}), 2.97(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.82(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H})$, $2.62\left(1 \mathrm{H}, \mathrm{dt}, J 13.8\right.$ and $\left.2.2, \mathrm{C} H \mathrm{HC} \equiv \mathrm{CC}_{5} \mathrm{H}_{11}\right), 2.54(1 \mathrm{H}, \mathrm{dt}$, $J 13.8$ and $\left.2.2, \mathrm{CH} H \mathrm{C}=\mathrm{CC}_{5} \mathrm{H}_{11}\right), 2.19(2 \mathrm{H}, \mathrm{tt}, J 7.0$ and 2.3 , $\left.\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}\right), 2.04(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.92(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and $6.3,4 \alpha-\mathrm{H}), 1.72(1 \mathrm{H}, \mathrm{d}, J 14.2,4 \beta-\mathrm{H}), 1.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $1.53-1.31(8 \mathrm{H}, \mathrm{m})$ and $0.90\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right) ; m / z 275$ ($\mathrm{M}^{+}+1,4.22 \%$), 257 (37), 239 (32), 208 (17), 191 (23), 166 100) and 173 (23).

General Procedure for LiAlD_{4} Reduction of exo-4,5-Epoxy Alcohols 5a-e and endo-3,4-Epoxy Alcohols 6a-d.-To a solution of the epoxy alcohol $(0.5 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ under an N_{2} atmosphere was rapidly added $\mathrm{LiAlD}_{4}(4.1 \mathrm{mmol})$ and the suspension was stirred at room temp. $\left(15^{\circ} \mathrm{C}\right)$ for $6-8 \mathrm{~d}$. To the mixture was then added, dropwise and successively at $0^{\circ} \mathrm{C}$, water $\left(0.2 \mathrm{~cm}^{3}\right)$, aqueous $15 \% \mathrm{NaOH}\left(0.2 \mathrm{~cm}^{3}\right)$ and water $\left(0.6 \mathrm{~cm}^{3}\right)$. The resulting mixture was filtered and the granular precipitate was thoroughly washed with EtOAc. The filtrate was concentrated under reduced pressure and the crude diol was purified by flash chromatography to afford the pure diol 8 or a mixture of 7 and 8 .
4β-d-3-Methyltricyclo[5.2.1.0 ${ }^{2,6}$] dec-8-ene-3,5-diol 8a. White solid, 91% yield, m.p. $107.5-108.0^{\circ} \mathrm{C}$ (ether) (Found: C, 72.8 ; $\mathrm{H}+\mathrm{D}, 9.5 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{DO}_{2}$ requires $\mathrm{C}, 72.89 ; \mathrm{H}+\mathrm{D}, 9.45 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300,1360,1315,1140,1125,1100,1000,750$ and 725 ; $\delta_{\mathrm{H}} 6.32(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}), 6.10(1 \mathrm{H}$, dd, $J 5.6$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{d}, J 6.1,5-\mathrm{H}), 2.97(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.74-2.66(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $6-$ H), $2.33(2 \mathrm{H}$, br s, two OH), $1.89(1 \mathrm{H}, \mathrm{d}, J 6.2,4 \alpha-\mathrm{H}), 1.45(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}$) and $1.34(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}) ; m / z 181\left(\mathrm{M}^{+}, 1 \%\right), 166(11)$, 164 (30), 146 (38), 99 (27) and 97 (100).
Mixture of $4 \alpha-\mathrm{D}-3-$ methyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5diol 7a and 43 -D-3-methyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 8a. White solid, 92% yield, m.p. $107.0-108.0^{\circ} \mathrm{C}$ (ether) (Found: C, 72.95; H + D, 9.4. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{DO}_{2}$ requires C , 72.89; H + D, 9.45%); $v_{\text {max }} / \mathrm{cm}^{-1} 3300,3050,1140,1120,1100,1000$ and $720 ; \delta_{\mathrm{H}} 6.29(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}), 6.07$ (1 $\mathrm{H}, \mathrm{dd}, J 5.6$ and $3.2,9-\mathrm{H}$ or $8-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.96(1$ $\mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.92(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.68(2 \mathrm{H}, \mathrm{m}$, 2-H and $6-\mathrm{H}), 2.04(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, two OH$), 1.88(0.37 \mathrm{H}, \mathrm{d}, J$ $6.3,4 \alpha-\mathrm{H}), 1.61(0.63 \mathrm{H}, \mathrm{s}, 4 \beta-\mathrm{H}), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and 1.32 ($2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$); $\mathrm{m} / \mathrm{z} 181\left(\mathrm{M}^{+}, 5 \%\right.$), 166 (100), 164 (6), 146 (3), 99 (27) and 97 (100).
4阝-d-3-Butyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 8b. White solid, 85% yield, m.p. $113.5-114.5^{\circ} \mathrm{C}$ (ether) (Found: C, 75.35 ; $\mathrm{H}+\mathrm{D}, 10.3 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{DO}_{2}$ requires $\mathrm{C}, 75.29 ; \mathrm{H}+\mathrm{D}, 10.38 \%$); $v_{\max } / \mathrm{cm}^{-1} 3300,3050,1340,1145,1090,1060,1020$ and $735 ; \delta_{\mathrm{H}}$ $6.34(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{dd}, J 5.6,3.2$, $9-\mathrm{H}$ or $8-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and $3.2,5-\mathrm{H}), 2.95(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H})$, $2.65(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 1.83(1 \mathrm{H}, \mathrm{d}, J 6.2,4 \alpha-\mathrm{H}), 1.67-1.62$ $(2 \mathrm{H}, \mathrm{m}), 1.52-1.32(6 \mathrm{H}, \mathrm{m}), 1.50(2 \mathrm{H}, \mathrm{s}$, two OH$)$ and $0.92(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.0, \mathrm{CH}_{3}\right) ; m / z 224(3 \%), 206$ (22), 204 (8), 188 (58), 166 (49), 157 (3), 141 (14), 123 (10) and 109 (10).

Mixture of 4α-D-3-butyltricyclo[5.2.1.0 $0^{2,6}$] dec-8-ene-3,5-diol 7b and 4β-D-3-butyltricyclo $\left[5.2 .1 .0^{2,6}\right]$ dec-8-ene-3,5-diol 8b. White solid, 90% yield, m.p. $113-114^{\circ} \mathrm{C}$ (ether) (Found: C, 75.2 ; $\mathrm{H}+\mathrm{D}, 10.4 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{DO}_{2}$ requires C, $75.29 ; \mathrm{H}+\mathrm{D}, 10.38 \%$); $v_{\max } / \mathrm{cm}^{-1} 3300,3050,1330,1140,1080,1060,1020$ and $730 ; \delta_{\mathrm{H}}$ $6.34(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and
3.2, $9-\mathrm{H}$ or $8-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.95(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H})$, $2.86(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H}), 2.64(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 1.83(0.49 \mathrm{H}, \mathrm{d}, J 6.2,4 \alpha-\mathrm{H}), 1.71(0.51 \mathrm{H}, \mathrm{d}, J$ $3.6,4 \beta-\mathrm{H}), 1.67-1.62(2 \mathrm{H}, \mathrm{m}), 1.52-1.32(8 \mathrm{H}, \mathrm{m}$, including two OH at 1.48) and $0.92\left(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{3}\right) ; m / z 206(3 \%), 188$ (3), 166 (100), 140 (43), 121 (5), 100 (11) and 66 (36).
4β-D-3-Octyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 8c. White solid, 83% yield, m.p. $104.5-105.0^{\circ} \mathrm{C}$ (ether) (Found: C, 77.4 ; $\mathrm{H}+\mathrm{D}, 11.15 . \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{DO}_{2}$ requires $\mathrm{C}, 77.37 ; \mathrm{H}+\mathrm{D}, 11.18 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300,1330,1090,1060$ and $730 ; \delta_{\mathrm{H}} 6.34(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $2.6,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,9-\mathrm{H}$ or $8-\mathrm{H})$, $3.73(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and $3.4,5-\mathrm{H}$), 2.96 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}$), 2.86 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}$), 2.76-2.63 $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $6-\mathrm{H}), 1.84(1 \mathrm{H}$, d, $J 6.3,4 \alpha-\mathrm{H}), 1.64(2 \mathrm{H}, \mathrm{m}), 1.51-1.24(16 \mathrm{H}, \mathrm{m}$, including two OH at 1.39) and $0.88\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z} 261(1 \%)$, 196 (15), 166 (65), 100 (23) and 67 (100).

Mixture of 4α-D-3-octyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 7 c and 4 3 -D-3-octyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 8c. White solid, 87% yield, m.p. $105.5-107.5^{\circ} \mathrm{C}$ (ether) (Found: C, 77.4; $\mathrm{H}+\mathrm{D}, 11.05 . \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{DO}_{2}$ requires $\mathrm{C}, 77.37 ; \mathrm{H}+\mathrm{D}$, 11.18%); $v_{\text {max }} / \mathrm{cm}^{-1} 3280,1090,1060$ and $725 ; \delta_{\mathrm{H}} 6.34(1 \mathrm{H}, \mathrm{dd}, J$ 5.5 and $2.9,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{dd}, J 5.4$ and $3.0,9-\mathrm{H}$ or $8-$ H), $3.73(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.96(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{m}$, 7-H or 1-H), $2.75-2.62(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $6-\mathrm{H}), 1.83(0.47 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.2,4 \alpha-\mathrm{H}), 1.71(0.53 \mathrm{H}, \mathrm{d}, J 4.5,4 \beta-\mathrm{H}), 1.67-1.58(2 \mathrm{H}, \mathrm{m})$, $1.54-1.21(16 \mathrm{H}, \mathrm{m}$, including two OH at 1.36 and 1.38$)$ and 0.88 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.4, \mathrm{CH}_{3}$); $m / \mathrm{z} 261$ (2\%), 212 (8), 196 (13), 166 (55), 100 (22) and 67 (100).
4β-D-3-(8-tert-Butyldimethylsiloxyoctyl)tricyclo[5.2.1.02,6]-dec-8-ene-3,5-diol 8 d . White solid, 80% yield, m.p. $79.5-80.5^{\circ} \mathrm{C}$ (hexane) (Found: C, 70.3; $\mathrm{H}+\mathrm{D}, 11.2 . \mathrm{C}_{24} \mathrm{H}_{43} \mathrm{DO}_{3} \mathrm{Si}$ requires C, $70.36 ; \mathrm{H}+\mathrm{D}, 11.07 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300,3050,1260,1100$, 840 and $775 ; \delta_{\mathrm{H}} 6.34(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $2.9,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11$ $(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $3.1,9-\mathrm{H}$ or $8-\mathrm{H}), 3.73(1 \mathrm{H}$, dd, $J 6.2$ and 3.3 , $5-\mathrm{H}), 3.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{OR}\right), 2.96(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.86$ ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}$), $2.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 1.82(1 \mathrm{H}, \mathrm{d}, J 6.2,4 \alpha-\mathrm{H}), 1.66-1.61(2 \mathrm{H}, \mathrm{m}), 1.53-1.30$ ($16 \mathrm{H}, \mathrm{m}$, including two OH at 1.41), $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and 0.05 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$); $m / z 392$ (3\%), 374 (2), 352 (9), 335 (100) and 269 (31).

Mixture of $4 \alpha-\mathrm{D}-3$-(8-tert-butyldimethylsiloxyoctyl)tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 7d and 43-D-3-(8-tert-butyldimethylsiloxyoctyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 8d. White solid, 77% yield, m.p. $78.0-81.5^{\circ} \mathrm{C}$ (hexane) (Found: $\mathrm{C}, 70.4 ; \mathrm{H}+\mathrm{D}, 11.0 . \mathrm{C}_{24} \mathrm{H}_{43} \mathrm{DO}_{3}$ Si requires C, 70.36; $\mathrm{H}+\mathrm{D}$, 11.07%); $v_{\text {max }} / \mathrm{cm}^{-1} 3300,3050,1260,1100,840$ and $775 ; \delta_{\mathrm{H}} 6.34$ $(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.0,8-\mathrm{H}$ or $9-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 3.2 , $9-\mathrm{H}$ or $8-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{OR}\right)$, $2.96(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$ or $1-\mathrm{H}), 2.74(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 1.83(0.55 \mathrm{H}, \mathrm{d}, J 6.2$, $4 \alpha-\mathrm{H}), 1.72(0.45 \mathrm{H}, \mathrm{d}, J 4.6,4 \beta-\mathrm{H}), 1.67-1.62(2 \mathrm{H}, \mathrm{m}), 1.56-$ $1.31(16 \mathrm{H}, \mathrm{m}$, including two OH at 1.54$), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$ and 0.05 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$); m/z 392 (2%), 374 (5), 353 (14), 334 (100), 308 (5), 268 (56) and 166 (7).

Mixture of $4 \alpha-\mathrm{D}-3-$ (oct-2-ynyl)tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-diol 7 e and 43 -D-3-(oct-2-ynyl)tricyclo $\left[5.2 .1 .0^{2,6}\right]$ dec-8-ene-$3,5-\mathrm{diol} 8 \mathrm{e}$. White solid, 81% yield, m.p. $69.0-71.5^{\circ} \mathrm{C}$ (light petroleum, b.p. $60-90^{\circ} \mathrm{C}$) (Found: C, 78.5; $\mathrm{H}+\mathrm{D}, 9.9$. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{DO}_{2}$ requires C, $78.50 ; \mathrm{H}+\mathrm{D}, 9.88 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$, 3050,1330 and $1115 ; \delta_{\mathrm{H}} 6.30(1 \mathrm{H}$, dd, $J 5.6$ and $3.2,8-\mathrm{H}$ or $9-$ H), $6.02(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.1,9-\mathrm{H}$ or $8-\mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $2.97(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $7-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $1-\mathrm{H}), 2.83(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}$ or $6-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $2-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{dt}, J 13.8$ and $2.4, \mathrm{CHHC} \equiv \mathrm{CC}_{5} \mathrm{H}_{11}$), $2.54(1 \mathrm{H}, \mathrm{dt}, J 13.8$ and 2.4 , $\left.\mathrm{CH} H \mathrm{C} \equiv \mathrm{CC}_{5} \mathrm{H}_{11}\right), 2.19\left(2 \mathrm{H}, \mathrm{tt}, J 6.9\right.$ and $2.4, \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$), $1.90(0.35 \mathrm{H}, \mathrm{d}, J 6.4,4 \alpha-\mathrm{H}), 1.73(2 \mathrm{H}, \mathrm{s}$, two OH$), 1.70(0.65 \mathrm{H}$, $\mathrm{s}, 4 \beta-\mathrm{H}), 1.53-1.31(8 \mathrm{H}, \mathrm{m})$ and $0.90\left(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{3}\right) ; m / z$ $209(6 \%), 166(46), 101(100)$ and $67(79)$.

Acknowledgements

We are grateful to Miss Qin-qin Ouyang for preparation of some of the epoxy alcohols.

References

1 A. J. H. Klunder, B. Zwanenburg and Z.-Y.-Liu, Tetrahedron Lett., 1991, 32, 3131.
2 Z.-Y. Liu and X.-J. Chu, Tetrahedron Lett., 1993, 34, 349.
3 J. H. M. Lange, N. A. J. M. Sommerdijk, P. P. M. A. Dols, E. G.

Arnouts, A. J. H. Klunder and B. Zwanenburg, Tetrahedron Lett., 1991, 32, 3128.
4 L. Zhang, J.-Y. Yang and Z.-Y. Liu, Chinese Chemical Lett., 1992, 3, 787.

5 M. Rosenberger, C. Newkom and E. R. Aig, J. Am. Chem. Soc., 1983, 105, 3656.

Paper 3/02892E
Received 20th May 1993
Accepted 17th June 1993

